Publications

Harrison Lab Publications of Note

Perform a customized PubMed literature search for Dr. Harrison.

• Reese, R.M., Harrison, M.M., and Alarid, E.T. (2019). Grainyhead-like protein 2: The emerging role in hormone-dependent cancers and epigenetics. Endocrinology  don.org/10.1210/en.2019-00213.

• McDaniel, S.M., Gibson, T.J., Schulz, K.N., Fernandez Garcia, M., Nevil, M., Jain, S.U., Lewis, P.W., Zaret, K.S., and Harrison, M.M. (2019). Continued activity of the pioneer factor Zelda is required to drive zygotic genome activation. Mol Cell  74:185-195.

• Schulz, K.N. and Harrison, M.M. (2018). Mechanisms regulating zygotic genome activation. Nat Rev Genet.  doi:10.1038/241576-018-0087-x

• Hamm, D.C. and Harrison, M.M. (2018). Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster. Open Biol. 

• Dufourt, J., Trullo, A., Hunter, J., Fernandez, C., Lazaro, J., Dejean, M., Morales, L., Nait-Amer, S., Schulz, K.N., Harrison, M.M., Favard, C., Radulescu, O., and Lagha, M. (2018). Temporal control of gene expression by the pioneer factor Zelda through transient interaction hubs. Nat. Commun. 9: 5194.

• Bier, E., Harrison, M.M., O’Connor-Giles, K.M., and Wildonger, J. (2018). Advances in Engineering the Fly Genome with the CRISPR-Cas System. Genetics. 208(1): 1-18.

• Hamm, D.C., Larson, E.D., Nevil, M. Marshall, K.E., Bondra, E.R., and Harrison, M.M. (2017). A conserved maternal-specific repressive domain in Zelda revealed by Cas9-mediated mutagenesis in Drosophila melanogaster. PLoS Genet.e1007120

• Janssens, D. H., Hamm, D. C., Anhezini, L., Xiao, Q., Siller, K. H., Siegrist, S. E., Harrison, M.M., and Lee, C.-Y. (2017) An Hdac1/Rpd3-Poised Circuit Balances Continual Self-Renewal and Rapid Restriction of Developmental Potential during Asymmetric Stem Cell Division. Dev Cell. 40(4): 367–380.

• Nevil, M., Bondra, E. R., Schulz, K. N., Kaplan, T., and Harrison, M. M. (2017) Stable Binding of the Conserved Transcription Factor Grainy Head to Its Target Genes Throughout Drosophila melanogaster Development. Genetics. 205(2): 605-620.

• Schulz, K.N., Bondra, E.R., Moshe, A., Villalta, J.E., Lieb, J.D., Kaplan, T., McKay, D.J., and M.M. Harrison. (2015) Zelda is differentially required for chromatin accessibility, transcription-factor binding and gene in expression in the early Drosophila embryo. Genome Res. 25(11):1715-26.

• Harrison, M. M., & Eisen, M. B. (2015) Transcriptional Activation of the Zygotic Genome in Drosophila. Curr Top Dev Biol. 113: 85–112.

• Gratz, S.J., Rubinstein, D., Harrison, M.M., Wildonger, J., and K.M. O’Connor-Giles. (2015) CRISPR/Cas9- genome editing in Drosophila. Curr Protoc Mol Biol. 111: 31.2.1 – 31.2.20.

• Gratz, S.J., Harrison, M.M., Wildonger, J., and K.M. O’Connor-Giles. (2015) CRISPR/Cas9- genome editing in Drosophila. Methods Mol Biol. 1311: 335-348.

• Hamm, D.C., Bondra, E.R., and M.M. Harrison. (2015) Transcriptional Activation is a Conserved Feature of the Early Embryonic Factor Zelda that Requires a Cluster of Four Zinc Fingers for DNA binding and Low-Complexity Activation Domain. J Biol Chem. 259:3508-3518.

• Li, X.Y., Harrison, M.M., Villata, J.E., Kaplan, T.* , and M.B. Eisen*. (2014) Establishment of regions of genomic activity during the Drosophila maternal to zyotic transition. eLife 3: doi10.7554
*co-senior authors

• Harrison, M.M., Jenkins, B.V., O’Connor-Giles, K.M. and J. Wildonger. (2014) A CRISPR view of development. Genes Dev. 28:1859-1872.

• Gratz, S.J., Wildonger, J., Harrison, M.M., and K.M. O’Connor-Giles. (2013) CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand. Fly. 7:249-255.

• Gratz, S.J., Cummings, A.M., Nguyen, J.N., Hamm, D.C., Donohue, L.K., Harrison, M.M.*, Wildonger, J.* and K.M. O’Connor-Giles*. (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9-nuclease. Genetics. 194:1029-1035.
recommended by Faculty of 1000
* corresponding authors

• Harrison, M.M. *, Li, X.Y*. Kaplan, T. *, Botchan, M.R., and M.B. Eisen. (2011) Zelda Binding in the Early Drosophila melanogaster Embryo Marks Regions Subsequently Activated at the Maternal-to-Zygotic Transistion. PLoS Genet. 7:e1002266.
highlighted in Nature Reviews Genetics and recommended by Faculty of 1000
* contributed equally

• Tabuchi, T.M., Deplancke, B., Osato, N., Zhu, L.J., Barrasa, I.M., Harrison, M.M., Horvitz, H.R., Walhout, A.J. and K.A. Hagstrom. (2011) Chromosome-Biased Binding and Gene Regulation by the Caenorhabditis elegans DRM Complex. PLoS Genetics. 7:e1002074.

• Cline, T.W., Dorsett, M., Sun, S., Harrison, M.M., Dines, J., Sefton, L., and L. Megna. (2010) Evolution of the Drosophila feminizing switch gene Sex-lethal. Genetics. 186:1321-1336.

• Harrison, M.M., Botchan, M.R. and T.W. Cline. (2010) Grainyhead and Zelda compete for binding to the promoters of the earliest-expressed Drosophila genes. Dev Biol. 345: 248-255.

Pre 2010
• Harrison, M.M., Lu, X. and H.R. Horvitz. (2007) LIN-61, one of two Caenorhabditis elegans malignant-brain-tumor-repeat-containing proteins, acts with DRM and NuRD-like protein complexes in vulval development but not in certain other biological processes. Genetics. 176: 255-271.

• Harrison, M.M., Ceol, C.J., Lu, X., and H.R. Horvitiz. (2006) Some C. elegans class B synMuv proteins encode a conserved LIN-35 Rb-containing complex distinct from a NuRD-like complex. Proc Natl Acad Sci USA. 103: 16782-16787.

• Ceol, C.J., Stegmeier, F., Harrison, M.M., and H.R. Horvitz. (2006) New classes of genes that act as negative regulators of let-60 Ras signaling in Caenorhabditis elegans. Genetics. 173: 709-726.

• Davison, E.M., Harrison, M.M., Walhout, A.J., Vidal, M., and H.R. Horvitiz. (2005) lin-8, which antagonizes Caenorhabditis elegans Ras-mediated vulval induction, encodes a novel nuclear protein that interacts with the LIN-35 Rb protein. Genetics. 171: 1017-1031.

• Sim, R.J., Harrison, M.M., Moxon, E.R., and C.M. Tang. (2000) Underestimation of meningococci in tonsillar tissue by nasopharyngeal swabbing. Lancet. 356: 1653-1654.